An Algorithm for Mining High Utility Closed Itemsets and Generators
نویسندگان
چکیده
Traditional association rule mining based on the support-confidence framework provides the objective measure of the rules that are of interest to users. However, it does not reflect the utility of the rules. To extract non-redundant association rules in support-confidence framework frequent closed itemsets and their generators play an important role. To extract non-redundant association rules among high utility itemsets, high utility closed itemsets (HUCI) and their generators should be extracted in order to apply traditional support-confidence framework. However, no efficient method exists at present for mining HUCIs with their generators. This paper addresses this issue. A postprocessing algorithm, called the HUCI-Miner, is proposed to mine HUCIs with their generators. The proposed algorithm is implemented using both synthetic and real datasets.
منابع مشابه
A New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملSimultaneous mining of frequent closed itemsets and their generators: Foundation and algorithm
Closed itemsets and their generators play an important role in frequent itemset and association rule mining. They allow a lossless representation of all frequent itemsets and association rules and facilitate mining. Some recent approaches discover frequent closed itemsets and generators separately. The Close algorithm mines them simultaneously but it needs to scan the database many times. Based...
متن کاملMining Minimal High-Utility Itemsets
Mining high-utility itemsets (HUIs) is a key data mining task. It consists of discovering groups of items that yield a high profit in transaction databases. A major drawback of traditional high-utility itemset mining algorithms is that they can return a large number of HUIs. Analyzing a large result set can be very time-consuming for users. To address this issue, concise representations of high...
متن کاملEfficient Algorithms for Mining of High Utility Itemsets
--The utility of an itemset represents its importance, which can be measured in terms of weight, value, quantity or other information depending on the user specification. High utility itemsets mining identifies itemsets whose utility satisfies a given threshold. It allows users to quantify the usefulness or preferences of items using different values. Thus, it reflects the impact of different i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.2988 شماره
صفحات -
تاریخ انتشار 2014